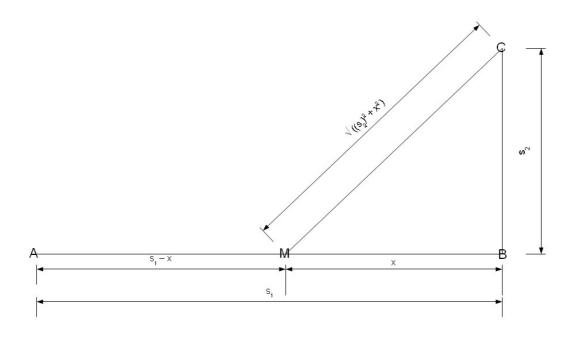
Extremwertaufgabe (1)

Eine Leitung soll gemäß nachfolgender Planungsskizze von A nach C verlegt werden. Dabei fallen bei der Verlegung der Leitung längs der Strecke \overline{AB} Kosten K_1 , bei der Verlegung der Leitung abseits der Strecke \overline{AB} Kosten K_2 an. Gesucht wird die Position des Punktes M, so daß die Kosten der Strecke \overline{AMC} minimal werden.



Lösung

1. Zielfunktion

Bezeichne \underline{x} die Strecke \overline{MB} , s_1 die Strecke \overline{AM} und s_2 die Strecke \overline{BC} , dann ist die Länge der abseits von \overline{AB} zu verlegende Strecke \overline{MC} gleich

$$\sqrt{(x^2+(s_2)^2)}$$

Die Kosten für den Streckenabschnitt AM belaufen sich dann auf

$$K_1 * (s_1 - x)$$

Die Kosten für den Streckenabschnitt MC auf

$$K_2* \sqrt{(x^2+(s_2)^2)}$$

Die Zielfunktion ist die Summe der Kosten der beiden Teilstrecken. Es ist dann

$$K(x) = K_1 * (s_1 - x) + K_2 * \sqrt{(x^2 + (s_2)^2)} \longrightarrow Min$$

2. Ableitungsfunktion

Die 1. Ableitungsfunktion von K ist dann

$$d/_{dx} K (x) = -K_1 + K_2 * 2x * \frac{1}{2} / \sqrt{(x^2 + (s_2)^2)}$$
$$= -K_1 + K_2 * x / \sqrt{(x^2 + (s_2)^2)}$$

3. Lage der lokalen Extrema

Ist x_E Extremstelle von K(x), dann gilt

$$0 = -K_{1} + K_{2} * x_{E} / \sqrt{(x_{E}^{2} + (s_{2})^{2})}$$

$$\Leftrightarrow + K_{1} = + K_{2} * x_{E} / \sqrt{(x_{E}^{2} + (s_{2})^{2})}$$

$$\Leftrightarrow + K_{1} \sqrt{(x_{E}^{2} + (s_{2})^{2})} = + K_{2} * x_{E}$$

$$\Leftrightarrow (K_{1})^{2} * (x_{E}^{2} + (s_{2})^{2}) = (K_{2})^{2} * x_{E}^{2}$$

$$\Leftrightarrow (K_{1})^{2} * x_{E}^{2} + (K_{1})^{2} * (s_{2})^{2} = (K_{2})^{2} * x_{E}^{2}$$

$$\Leftrightarrow (K_{1})^{2} * x_{E}^{2} - (K_{2})^{2} * x_{E}^{2} = -(K_{1})^{2} * (s_{2})^{2}$$

$$\Leftrightarrow x_{E}^{2} * ((K_{1})^{2} - (K_{2})^{2}) = -(K_{1})^{2} * (s_{2})^{2}$$

$$\Leftrightarrow -x_{E}^{2} * ((K_{2})^{2} - (K_{1})^{2}) = -(K_{1})^{2} * (s_{2})^{2} / ((K_{2})^{2} - (K_{1})^{2})$$

$$\Leftrightarrow x_{E}^{2} = (K_{1})^{2} * (s_{2})^{2} / ((K_{2})^{2} - (K_{1})^{2})$$

4. Berechnung des Kostenminimus

Mit den Lösungen

$$x_{E1} = + \sqrt{\left[(K_1)^2 * (S_2)^2 / ((K_2)^2 - (K_1)^2) \right]}$$

$$x_{E2} = -\sqrt{[(K_1)^2 * (S_2)^2 / ((K_2)^2 - (K_1)^2)]}$$

gilt wegen $K_2 \! > \! K_1$ dann $x_{E2} \! < \! 0$. Das Kostenminimum K_{min} ist daher gegeben durch

$$K_{min} = K(x_1) = K_1 * (s_1 - x_1) + K_2 * \sqrt{(x_1)^2 + (s_2)^2}$$